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Spin-coating is a process used to fabricate thin films for device applications. In
this paper, lubrication theory is used to derive an axisymmetric model for the spin-
coating of two immiscible vertically stratified Newtonian thin films. The model
includes gravitational, van der Waals, capillary and viscous forces, differences in
liquid layer properties and evaporation/condensation effects. Thinning calculations
focus on the effects of viscosity and condensation/evaporation. In this case, for
layers of uniform thickness, the lower layer thins monotonically yet never reaches
zero thickness. With evaporation mass loss the upper layer disappears in finite time,
whereas with condensation effects the upper layer approaches a steady-state thickness.
Fully nonlinear calculations are carried out for films with non-uniform thickness and
the deviation of the interfaces from the flat state is monitored. In general, disturbances
to the lower layer have a greater effect on the upper layer than those of disturbances
of the upper layer on the lower layer. Disturbances along the upper gas–liquid free
surface propagate outward more rapidly than those along the lower liquid–liquid
interface and disturbances that decrease the film thickness tend to dissipate more
slowly.

1. Introduction
Spin-coating is a common material processing technique used to create thin films.

It is accomplished by pouring liquid material on to a substrate, the rotation of
which causes the liquid to spread and thin over the substrate until a target thickness
is reached. Spin-coating is used to process semiconductors, DVDs and CDs, among
other devices (Momoniat & Mason 1998; Charpin, Lombe & Myers 2007). Now spin-
coating can be used to produce layers as thin as tens of nanometres; therefore there
has been the recent application of spin-coating technology during the processing
of other advanced devices. For example, the spin-coating of polymer blends and
conjugated polymers is used in the production of light-emitting diodes (LEDs), thin-
film transistors (TFTs), electrochromic cells and photovoltaic devices. (Wei, Coffey &
Ginger 2006; Castro et al. 2007).

Polymers are used because they are cheap to process compared with other materials,
and they can be designed for a variety of configurations. Also, in a polymer blend
there can be phase separation resulting in the development of internal microstructure
or even nanostructure during spin-coating (Halls et al. 1995; Castro et al. 2007).
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In photovoltaic devices, development of methods to achieve these structures is
the focus of current research efforts, since the nanostructure must be fine enough
(tens of nanometres; Yang & Forrest 2008; Jen, personal communication) in order
to generate electricity. Control over the thinning process and phase separation in
polymers or in any other material is important in enabling the production of films
with tailored properties. However, phase separation is very difficult to control, and
better understanding of the evolution of the nanostructure as a function of the
variables in the spin-coating process is needed.

There are different proposed mechanisms for the evolution of the nanostructures/
microstructures in polymer blends during spin-coating. One mechanism is the direct
separation of phases via a spinodal or nucleation and growth route. Phase separation
simply occurs in the bulk at the same time the film is thinning. The evolving
liquid–liquid or gas–liquid interface bounding the thinning film is not required for
internal phase separation (Heriot & Jones 2005). However, it is also the case that
phase separation in blends can occur unidirectionally, parallel to the substrate surface,
resulting in a vertically layered structure. Often, chemically treated substrates are used
to generate vertically layered structures during spin-coating (Bjorstrom et al. 2007).
Heriot & Jones (2005) have provided experimental evidence supporting an interfacial-
driven mechanism of phase separation in a polymer blend of polymethylmethacrylate
(PMMA) and polystyrene (PS) that destroys the bilayer structure under certain
conditions. In this work, time-resolved small-angle light scattering and light reflectivity
were used to observe in situ the evolution of the nanostructure during spin-coating.
The results indicate that the blend of polymers separates into a vertically layered two-
phase structure so that there is a horizontal (or a nearly horizontal) polymer–polymer
interphase boundary. This interface then undergoes an instability which evolves into
the final nanostructure. Typical experimental results of Heriot & Jones (2005) illustrate
film thicknesses in the range of tens to a thousand nanometres, whereas in the lateral
or longitudinal direction the structure has a characteristic dimension of 1–50 microns.
In addition, Sprenger et al. (2003) have outlined different methods for the creation
of hierarchical patterns in spin-coated polymers, including polymer phase separation
into a bilayer structure followed by an interfacial instability. They were able to select
the route by varying the spin-coating speed and the concentration of the solution.

The interfacial instability in the thin multi-layered spin-coated film can occur at very
low Reynolds number. Thin liquid films are subject to a variety of intermolecular
forces, the strength of which depends on the nature of the liquid and the phases
bounding the liquid as well as the thickness of the film (see, for example, Israelachvili
1991). The origin of the interfacial instability could be the intermolecular forces
which become increasingly important as any film thins to within a couple of hundred
nanometres. The study of the effects of van der Waals forces on stability of static thin
films has been carried out by Williams & Davis (1982) and in free films by Erneux &
Davis (1993). Many other researchers have also studied these intermolecular forces
in a variety of films as the reviews by Davis (1995), Oron, Davis & Bankoff (1997)
and Craster & Matar (2009) well describe.

Other mechanisms giving rise to interfacial instabilities have also been identified
in layered fluids at very low Reynolds number that are not related to the thin-film
forces discussed above. Li (1969) and Kliakhandler & Sivashinsky (1995, 1996) have
shown that there are long-wave interfacial instabilities in stratified three-layer creeping
Couette flows in which inertial effects play no role. Gao & Lu (2008) examined an
interfacial instability in a tilted two-layered liquid in which there are gravitational
forces driving a flow in the longitudinal direction and in which inertia again plays no
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role. They suggest that the behaviour of the jumps in the flow and pressure fields at
the free surface and at the internal interface is the source of the mechanism driving
the instability.

In summary, the conclusion from previous research efforts is that there may be
different mechanisms responsible for the evolution of the nanostructure observed in
spin-coated polymer blends. Of interest here is the initial stratification of the polymers
into a two-layered structure, followed by a hydrodynamically driven interfacial
instability, which results in a two-phase mixture.

In this paper lubrication theory is used to develop a model for the spin-coating of
a two-layer liquid. The initial condition for the model is two immiscible, vertically
stratified liquid layers with a passive gas above. In the model, the fluids are assumed
to be Newtonian, each having constant density and viscosity but differing from one
phase to another. The model derived includes the effects of gravity, van der Waals
forces, capillary forces and viscous forces as well as those of mass loss/gain because
of evaporation/condensation along the upper free surface. However, in this paper the
calculations only include the effects of viscosity and evaporation; other effects will
be considered later. The overall purpose of this work is to examine how a two-layer
system evolves during spin-coating, including observing whether or not there are
interfacial instabilities unique to a two-layer system, and to understand how evolving
disturbances on one interface affect evolution of the other interface. Before presenting
the model, relevant modelling efforts in spin-coating are discussed.

1.1. Modelling efforts in spin-coating

One of the earliest efforts in spin-coat modelling was carried out by Emslie, Bonner &
Peck (1958). They applied lubrication theory to model a Newtonian liquid thinning on
a rotating disk at low Reynolds number, meanwhile ignoring gravitational, capillary
forces and Coriolis effects. Using the method of characteristics, they were able to
examine the evolution of a variety of initial interfacial profiles. In general they found
that spinning leads to evening of surfaces over time, although there were some cases
in which this appeared not to be true, but as they stated, in those instances, the theory
breaks down.

Reisfeld, Bankoff & Davis (1991a) examined the spin-coating of a thin liquid film
on a substrate. They also used lubrication theory to derive the governing equations
including centripetal, inertial, surface tension and gravitational forces as well as
evaporation and condensation at the free surface. They computed the rates of uniform
film thinning because of radial drainage. They found that evaporation causes a film
to thin to zero thickness in finite time. With condensation steady-state thicknesses
can be achieved, owing to a balance between the mass lost from radial drainage and
mass gained because of condensation. They investigated the linear stability of the film
and concluded that for evaporating surfaces the lower-wavenumber disturbances are
stable and the larger-wavenumber ones are transiently stable. Condensing films show
regions of instability at larger wavenumbers in addition to stable and transiently
stable ranges.

Subsequently, Reisfeld, Bankoff & Davis (1991b) explored the evolution of
disturbances in a multicomponent film. They derived coupled nonlinear evolution
equations for the height of the film and for the concentration field within the film.
Their findings showed that interfaces exhibited irregularities in the case in which the
fluids had highly volatile solvents, which is consistent with experiment.

Recent highlights of other spin-coat modelling efforts include the work of
Schwartz & Roy (2004) who developed a quite general model for the spin-coating



268 A. McIntyre and L. N. Brush

Vapour

Liquid 2

Liquid 1

z = h(1) (r, t)
z = h(2) (r, t)

ω

z

Figure 1. Schematic representation of rotating liquid films.

of a Newtonian liquid film using lubrication theory. Their model includes surface
tension, gravity and van der Waals forces, chemically patterned substrates and a
finite contact angle at the leading edge of the thinning film. Their numerical results
showed that the reason for finger formation at the leading edge of spinning films was
imperfect wetting behaviour, in good agreement with experiment. They also argued
that for spin-coating problems the static equilibrium contact angle can be used to
accurately model the behaviour of the film. They claimed that the dynamic contact
angle relationships (Dussan & Davis 1974; Dussan 1979; Ehrhard & Davis 1991) are
not required for spin-coat models.

More recently Charpin et al. (2007) have studied the spin-coating of generalized
Newtonian films using the power-law and Ellis-law models of the viscosity. The Ellis
model exhibits Newtonian behaviour up to a transition value in the shear rate, and
then for higher shear rates there is power-law dependence. Power-law fluids show
a spike in the centre of the film because of the vanishing of the shear rate there
and thus an infinite viscosity. Capillarity eliminates this spike. The Ellis model also
has a central spike, but it is smoother, and the film spreads more rapidly than in
the power-law model. Similar power-law behaviour had been observed by Acrivos,
Shah & Peterson (1960) and further explained by Jenekhe & Schuldt (1984).

Finally, Matar, Sisoev & Lawrence (2008) have treated the spin-coating of thinning
films on substrates with topology and flow rate modulation. Using a boundary-layer
approach they showed that substrate patterning and flow rate modulation cause large
waviness compared with the flat, unforced case.

Our approach to modelling spin-coating is similar to that of Reisfeld et al. (1991a).
This work involves the study of a multi-layer film; i.e. there is a free surface and an
internal interface between two fluids. Our treatment of the dynamics of the multi-
layer system also closely follows the works of Danov et al. (1998), Pototsky et al.
(2005) and Fisher & Golovin (2005). Although the notation is different in these
multi-layer approaches the models are similar and provide the appropriate conditions
at interfaces.

2. The model
2.1. Governing equations

Consider an isothermal system consisting of two immiscible, incompressible thin liquid
films, one lying on top of the other, on a rigid, rotating substrate with an inviscid,
passive gas phase above the layered liquids. The lower liquid film is in contact with the
substrate and is designated as liquid 1, and the liquid on top is designated as liquid 2
(see figure 1). In a polar cylindrical coordinate system (r, θ, z) the origin is placed along
the axis of rotation at the substrate–liquid 1 interface (hereafter referred to as the
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substrate surface) and z is perpendicular to the substrate surface. The rigid substrate
surface is flat, but the liquid–gas interface (z = h(2)(t, r, θ, z), hereafter referred to as
the free surface) and the liquid–liquid interface (z = h(1)(t, r, θ, z), hereafter referred
to as the internal surface) can be any shape.

The equations governing the components of the liquid velocity v(i)(r, θ, z, t) =
(u(i)(r, θ, z, t), v(i)(r, θ, z, t), w(i)(r, θ, z, t)) and the pressure p(i)(r, θ, z, t) in the i (=1, 2)
liquid films are the equations of motion,

ρ̂(i)

(
∂v(i)

∂t
+ v(i) · ∇v(i)

)
= −∇p(i) − ∇φ(i) + η̂(i)∇2v(i)

− ρ̂(i)
[
2ω × v(i) + ω × (ω × r) + g

]
, (2.1)

and the continuity equation,

∇ · v(i) = 0, (2.2)

where ρ̂(i) is the liquid density of the ith fluid; η̂(i) is the viscosity; ω = (0, 0, ω) is the
angular velocity; r = (r, 0, 0) is the radial vector; and g = (0, 0, g) is the gravitational
acceleration. (Bold italic characters refer to vector quantities and bold type to higher-
rank tensor quantities.) The functions φ(i) represent bulk potentials within each liquid.
Such terms can arise when liquid layers become thinner than a couple of hundred
nanometres when van der Waals forces become relevant. It is also noted that many
thin liquid polymeric layers exhibit a range of behaviours. For example, at low shear
rates the behaviour is often Newtonian; as the shear rate increases there is a transition
to shear thinning, and at even higher shear rates there may be another transition
to Newtonian behaviour. In these cases the viscosity can be modelled by an Ellis or
Carreau law (Bird, Armstrong & Hassager 1977; Myers 2005; Charpin et al. 2007;
Brush & Roper 2008). However, based on the results of Charpin et al. (2007) cited in
the ‘Introduction’ we do not anticipate that including the shear rate dependence of
the viscosity will dramatically change our results, particularly at low shear rates, and
so the liquids will be treated as Newtonian.

There are a number of conditions imposed at the three interfaces. At the substrate
surface (z = 0) the fluid velocity vanishes,

v(1) = o, (2.3)

so that there is no slip or fluid penetration.
At the free surface, z =h(2)(r, θ, t), there is a kinematic condition

J = ρ̂(2)
(
v(2) − v2i

)
· n̂(2)

, (2.4)

where the components of the fluid velocity are evaluated at the interface and v2i is
the velocity of the interface and J the evaporation rate (assumed constant). The unit
vector normal to the ith interface is

n̂(i) =

(
− h(i)

r , −h
(i)
θ /r, 1

)
(
1 +

(
h

(i)
r

)2
+

(
h

(i)
θ /r

)2)1/2
,

where the subscripts denote partial derivatives. There are also the conditions on the
stress tensor D(2) at the free surface:

n̂(2) · D(2) · n̂(2) =
(
p(2) − pG

)
+ σ (2)K (2). (2.5)
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Here, the effect of vapour recoil, which can occur when there is phase transformation
(Burelbach, Bankoff & Davis 1988), has been neglected. In addition,

t̂
(2j ) · D(2) · n̂(2) = 0, (2.6)

where

D(2) ≡ η̂(2)
(
∇v(2) +

(
∇v(2)

)T )
; (2.7)

t̂
(2j )

(j = 1, 2) are tangential vectors at the free surface; pG and ρG are the hydrostatic
pressure and density in the overlying vapour, respectively; σ (2) is the surface tension
of the free surface; and K (2) is the mean curvature of the free surface. Equation (2.6)
implies that Marangoni effects are not considered.

At the internal interface, conditions include the continuity of fluid velocity,

v(1) = v(2), (2.8)

the kinematic condition,

ρ̂(1)
(
v(1) − v1i

)
· n̂(1) = 0, (2.9)

and the jump in the normal component of the stress tensor,[
n̂(1) · D(i) · n̂(1)

]i=2

i=1
=

(
p(1) − p(2)

)
n̂(1) + σ (1)K (1), (2.10)

and in the tangential components,[
t̂
(1j ) · D(i) · n̂(1)

]i=2

i=1
= 0 (2.11)

(j = 1, 2), where the brackets refer to the difference in the values between the upper
liquid layer (2) and the lower liquid layer (1) of the quantity inside the brackets.

Finally there are the lateral conditions. In this work only axisymmetric solutions
are calculated, and this requires all shape functions, fluid velocities and the pressure
to have vanishing radial derivatives at the origin and to be finite there. In the far field
at large r we assume that the interface remains flat. More details will be provided in
the discussion of the calculations presented below.

3. Scaling
The governing equations and boundary conditions are non-dimensionalized using

scalings adapted from Reisfeld et al. (1991a). It is also convenient to define p(i)∗ =
p(i) + φ(i) and substitute for p(i) in the interface conditions. The superscript ‘∗’ is then
dropped. In the present configuration, when considering non-retarded van der Waals
forces only, evaluation of the potentials gives

φ(1) =
A1

6π(h(1))3
+

Ai

6π(h(2))3
(3.1)

and

φ(2) =
A2

6π(h(2) − h(1))3
+

Ai

6π(h(2))3
(3.2)

which are to be used in the jump conditions for the normal component of the
stress tensor. The coefficients A1, A2 and Ai are Hamaker constants representing
the interactions between the internal and substrate interfaces, the internal interface
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and the free surface and the free surface and the substrate interface, respectively
(Israelachvili 1991; Danov et al. 1998; Pototsky et al. 2005).

The characteristic length scales for radial and vertical directions are the disk radius
L and initial mean film thickness h0, respectively. The density and viscosity are scaled
to the values ρ0 and η0 to be chosen later (from which the scale for the kinematic
viscosity is ν0 = η0/ρ0). For convenience, these may be taken to be the parameters of
one of the layer fluids. The substrate rotation rate is a constant value ω. The radial
velocity scale is U0 = ω2Lh2

0/ν0; the azimuthal velocity scale is V0 = U0ωh2
0/ν0; and

the vertical velocity scale is W0 =U0h0/L. The pressure scale is P0 = ρ0ω
2L2, Φ (i) ≡

φ(i)/Po, and the time scale is T0 = L/U0. Scaled time and all scaled lengths, velocities
and pressures are represented in upper case.

After scaling, the governing equations for layer i in component form become

εRe

(
∂U

∂T
+ U

∂U

∂R
+ W

∂U

∂Z

)
= − 1

ρ(i)

∂P

∂R
+ ν(i)ε2

[
1

R
(RU )R

]
R

+ ν(i) ∂
2U

∂Z2
+ 2εReV + R + ε2Re2 V 2

R
, (3.3)

εRe

(
∂V

∂T
+ U

∂V

∂R
+ W

∂V

∂Z
+

UV

R

)
= ν(i) ∂

2V

∂Z2
+ ε2ν(i) ∂

∂R

[
1

R

∂(RV )

∂R

]
R

− 2U, (3.4)

ε3Re

(
∂W

∂T
+ U

∂W

∂R
+W

∂W

∂Z

)
= − 1

ρ(i)

∂P

∂Z
+ ε2ν(i) ∂

2W

∂Z2
+ ε4ν(i)

[
1

R

∂

∂R

(
R

∂W

∂R

)]
,

(3.5)

1

R

∂(RU )

∂R
+

∂W

∂Z
= 0, (3.6)

where the dimensionless parameters that appear are the aspect ratio ε =
h0/L and the Reynolds number Re = U0h0/ν0, and for the ith layer the dimensionless
density ρ(i) = ρ̂(i)/ρ0, the dimensionless viscosity η(i) = η̂(i)/η0 and the dimen-
sionless kinematic viscosity ν(i) = ν̂(i)/ν0. Gravitational effects are now assumed
negligible.

At the surface of the substrate,

U (1) = 0, (3.7)

V (1) = 0, (3.8)

W (1) = 0. (3.9)

The scaled boundary conditions at the internal interface are

U (1) = U (2), (3.10)

V (1) = V (2), (3.11)

W (1) = W (2), (3.12)

∂H (1)

∂T
+ U

∂H (1)

∂R
= W (1), (3.13)
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P (2) − P (1) − Φ (2) + Φ (1) +
2ε2

1 + ε2

(
∂H (1)

∂R

)2

[(
η(1) ∂W (1)

∂Z
− η(2) ∂W (2)

∂Z

)

−ε2

(
∂H (1)

∂R

) (
η(1) ∂W (1)

∂R
− η(2) ∂W (2)

∂R

)
−

(
∂H (1)

∂R

) (
η(1) ∂U (1)

∂Z
− η(2) ∂U (2)

∂Z

)

−ε2

(
∂H (1)

∂R

)2 (
η(1) ∂U (1)

∂R
− η(2) ∂U (2)

∂R

)]
= ε3C−1K (2), (3.14)

where C−1 = σ (1)/ρ0ω
2Lh2

0 is the Weber number,

[
1 − ε2

(
∂H (1)

∂R

)2
] [

η(1) ∂U (1)

∂Z
− η(2) ∂U (2)

∂Z
+ ε2

(
η(1) ∂W (1)

∂R
− η(2) ∂W (2)

∂R

)]

− 2ε2

(
∂H (1)

∂R

)(
η(1) ∂U (1)

∂R
− η(2) ∂U (2)

∂R
−η(1) ∂W (1)

∂Z
+ η(2) ∂W (2)

∂Z

)
= 0 (3.15)

and

η(2) ∂V (2)

∂Z
− η(1) ∂V (1)

∂Z
+ ε2

(
∂H (1)

∂R

)[
η(1)R

(
V (1)

R

)
R

− η(2)R

(
V (2)

R

)
R

]
= 0. (3.16)

The scaled boundary conditions at the free surface are

∂H (2)

∂T
+ U (2)

(
∂H (2)

∂R

)
+

E

ρ(2)

√
1 + ε2

[
∂H (2)

∂R

]2

= W (2), (3.17)

where E = 3J/2ερ0U0,

PG − P (2) + Φ (2) +
2η(2)ε2

1 + ε2

[
∂H (2)

∂R

]2

[
∂W (2)

∂Z
−

(
∂H (2)

∂R

)
∂U (2)

∂Z

+ ε2 ∂H (2)

∂R

((
∂H (2)

∂R

)
∂U (2)

∂R
− ∂W (2)

∂R

)]
= ε3σ̄C−1K (2) (3.18)

in which σ̄ = σ (2)/σ (1),

(
∂U (2)

∂Z
+ ε2 ∂W (2)

∂R

)[
1 − ε2

(
∂H (2)

∂R

)2
]

+ 2ε2 ∂H (2)

∂R

(
∂W (2)

∂Z
− ∂U (2)

∂Z

)
= 0 (3.19)

and

∂V (2)

∂Z
− ε2 ∂H (2)

∂R
R

(
V (2)

R

)
R

= 0. (3.20)
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4. Derivation of evolution equations
To determine the behaviour of the films when the Reynolds number is O(1) or

smaller, we expand U , V , W and P in powers of ε,

U (i) = U (i0) + εU (i1) + · · · , (4.1)

V (i) = V (i0) + εV (i1) + · · · , (4.2)

W (i) = W (i0) + εW (i1) + · · · , (4.3)

P (i) = P (i0) + εP (i1) + · · · , (4.4)

and substitute these expansions into (3.3)–(3.20). This leads to a sequence of equations
at increasing order in ε. The pair of evolution equations for the interfaces is derived
at O(1) in ε. The solution procedure is straightforward, and the result is the following
two evolution equations for H (1) and H (2):

∂H (1)

∂T
=

(
∂2P (10)

∂R2
+

1

R

∂P (10)

∂R
− 2

)
(H (1))3

6
−

[
∂C6

∂R
+

C6

R

] (
H (1)

)2

2

− ∂H (1)

∂R

[(
∂P (10)

∂R
− R

) (
H (1)

)2

2
+ C6H

(1)

]
(4.5)

and

∂H (2)

∂T
= C5 −

[(
∂C2

∂R

)
+

C2

R

]
H (2) +

[
∂S

∂R
+

S

R

] (
H (2)

)3

3
+

+ S
∂H (2)

∂R

(H (2))2

2
− ∂H (2)

∂R

[
C2 −

S
(
H (2)

)2

2

]
− E, (4.6)

where

P (10) = PG − C−1

(
∂2H (1)

∂R2
+

1

R

∂H (1)

∂R

)
− σ̄C−1

(
∂2H (2)

∂R2
+

1

R

∂H (2)

∂R

)

+
Â2(

H (2)
)3

+
Â1(

H (1)
)3

, (4.7)

P (20) = PG − σ̄C−1

(
∂2H (2)

∂R2
+

1

R

∂H (2)

∂R

)
+

Â21(
H (2) − H (1)

)3
+

Â2(
H (2)

)3
, (4.8)

C6 = η̄
[
S

(
H (1) − H (2)

)]
−

(
∂P (10)

∂R
− R

)
H (1), (4.9)

S = η̄−1

(
∂P (20)

∂R
− ρ̄R

)
H (1), (4.10)

with η̄ = η(2)/η(1) and ρ̄ = ρ(2)/ρ(1),

C2 =

(
∂P (10)

∂R
− R

)
(H (1))2

2
+ C6H

(1) − S

(
(H (1))2

2
− H (1)H (2)

)
(4.11)

and

C5 =

[
∂S

∂R
+

S

R

](
(H (1))3

6
− (H (1))2

2
H (2)

)
+

(
∂2C2

∂R2
+

1

R

∂C2

∂R

)
H (1)

− S
(H (1))2

2

∂H (2)

∂R
−

[
∂2P (10)

∂R2
+

1

R

∂P (10)

∂R
− 2

]
(H (1))3

6
−

[
∂C6

∂R
+

C6

R

]
(H (1))2

2
. (4.12)



274 A. McIntyre and L. N. Brush

In the remainder of the paper, the effects of surface tension, van der Waals forces
and inertia will be ignored. These effects will be the focus of future studies. Note
that changes in the rotation rate affect the variable scalings and the dimensionless
parameter E. The change in E with rotation rate means that the rate of mass
loss (gain) because of evaporation (condensation) is changed relative to the rate at
which mass is transported outward during thinning. In addition, the leading-order
components of the fluid velocities in the two layers are presented in the Appendix.

For clarity, the governing equations will be rewritten in terms of the variables
h(1) = H (1) and h(2) =H (2) − H (1), so that h(i) now represents the ‘thickness’ of the ith
layer. The simplified governing equations, written in terms of the new variables are

∂h(1)

∂T
= − 1

R

[
R2

(
ρ(1)

[
h(1)

]3

3η(1)
+

ρ(2)
[
h(1)

]2
h(2)

2η(1)

)]
R

, (4.13)

∂h(2)

∂T
= − 1

R

[
R2

(
ρ(2)

[
h(2)

]3

3η(2)
+

ρ(1)
[
h(1)

]2
h(2)

2η(1)
+

ρ(2)h(1)
[
h(2)

]2

η(1)

)]
R

− E

ρ(2)
. (4.14)

For simplicity, we choose η0 and ρ0 equal to the values of fluid 1; so η(1) = 1 and
ρ(1) = 1, leaving ρ(2) and η(2) as parameters in the following sections.

Before presenting results it is of interest to point out that there are two limits by
which system (4.13)–(4.14) reduces to the single-layer result obtained in Emslie et al.
(1958),

∂h

∂t
= − ω2

3νr

(
r2h3

)
r
, (4.15)

in dimensional form, where ν is the kinematic viscosity of the single layer and all
other variables have been defined previously.

The first limit is that in which the properties of the two fluid are identical, so that
η(1) = η(2) and ρ(1) = ρ(2). Under these conditions, the system reduces to

∂h(1)

∂T
= − 1

3ν(2)R

[
R2

([
h(1)

]3
+

3

2

[
h(1)

]2
h(2)

)]
R

, (4.16)

∂h(2)

∂T
= − 1

3ν(2)R

[
R2

([
h(2)

]3
+

3

2

[
h(1)

]2
h(2) + 3h(1)

[
h(2)

]2

)]
R

− E

ρ(2)
. (4.17)

The free surface is located at Z = h(1) + h(2) ≡ H (R, T ); so the single-layer behaviour
is given by

∂H

∂T
=

∂h(1)

∂T
+

∂h(2)

∂T
= − 1

3ν(2)R

[
R2

([
h(1)

]3
+ 3

[
h(1)

]2
h(2) + 3h(1)

[
h(2)

]2

+
[
h(2)

]3

)]
R

− E

ρ(2)
= − 1

3ν(2)R

(
R2H 3

)
R

− E

ρ(2)
. (4.18)

If there is no evaporation at the liquid–vapour interface this reduces to (4.15) on
conversion to dimensional form.
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Figure 2. Planar solution trajectories in the (h(1), h(2)) plane for E =0, η(1) = 1, η(2) = 0.5,
ρ(1) = 1, ρ(2) = 1.

The second limit is an infinitely viscous lower layer. Taking η(1) → ∞ and keeping
ρ(1), ρ(2), η(2), ν(2) finite, (4.13) and (4.14) reduce to

∂h(1)

∂T
= 0,

∂h(2)

∂T
= − 1

3ν(2)R

(
R2

[
h(2)

]3)
R

− E

ρ(2)
.

If there is no evaporation at the liquid–vapour interface this again reduces to (4.15).

5. Planar solutions
Planar solutions were numerically calculated using the LSODA integrator from

ODEPACK provided by Jones et al. (2001). We consider the three general conditions:
E = 0 (no evaporation), E > 0 (evaporation) and E < 0 (condensation). In all of the
results plotted below, η(1) = 1, ρ(1) = 1, η(2) = 0.5 and ρ(2) = 1. The solutions are plotted
on the (h(1), h(2)) phase plane, and each trajectory on the phase plane corresponds to
one thinning experiment. As T increases, the solutions initially move down and to the
left along any solution trajectory in the (h(1), h(2)) plane. For any value of E, the lower
layer always thins monotonically, requiring infinite time to reach zero thickness.

5.1. No evaporation (E = 0)

For zero E, both layers thin monotonically to zero as shown in figure 2, since all
parameters and layer thicknesses are non-negative. The trajectories in figure 2 run
from T = 0 to T = 100 (although it may be difficult to see in the plot, these trajectories
do not reach the origin). The inset shows the behaviour of the third trajectory from
the h(1) axis as a function of time.

All curves are concave up, since the upper layer thins more rapidly than the lower
layer, causing the trajectories to eventually approach zero along the h(1) axis. Once the
thickness of the upper layer is much smaller than that of the lower layer (h(2) � h(1)),
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Figure 3. Planar solution trajectories in the (h(1), h(2)) plane for E = 0.1, η(1) = 1, η(2) = 0.5,
ρ(1) = 1, ρ(2) = 1.

we can approximate the differential equation for h(1) as

dh(1)

dT
= −2ρ(1)

3η(1)

[
h(1)

]3
. (5.1)

This equation has a solution of the form h(1) = 1/
√

C + 2BT (where C and B are
constant) which reaches zero thickness as T → ∞.

5.2. Evaporation (E > 0)

For positive E, the upper layer will reach zero thickness in finite time for any
initial condition. Notice that for positive values of layer parameters and thicknesses,
dh(2)/dT < −E/ρ(2); so the upper layer thins faster than the linear function h2 −
ET/ρ(2), where h2 is the value of h(2) at T =0. Therefore it reaches zero thickness at
some finite time T0 < h2ρ

(2)/E. This behaviour is seen in figure 3, with all trajectories
intersecting the h(1) axis at or before T ≈ 4.51. As seen in the inset, the upper layer
thins to zero thickness at T ≈ 1.39, at which point the simulation is stopped. The
curvature of the trajectories changes to concave down once the evaporation removes
mass from the upper layer more rapidly than outflow at the edges. As discussed in
the E = 0 case, the lower layer still thins monotonically, and the approximation of the
differential equation for h(1) becomes exact once the upper layer thickness vanishes
(assuming evaporation ceases after this time). So the lower layer would still require
infinite time to reach zero thickness.

5.3. Condensation (E < 0)

For negative E in the upper layer, the influx of mass across the free surface will
eventually balance the diminishing outflow of fluid at the right boundary, so that
the upper layer approaches a steady thickness as the lower layer continues to thin
because of radial drainage. This behaviour is shown in figure 4. The trajectories in
figure 4 run from T = 0 to T = 100.

For the given liquids, all trajectories terminate (in infinite time) at a fixed point
located on the h(2) axis; this is the only point for which dh(1)/dT = dh(2)/dT =0. Zeros
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Figure 4. Planar solution trajectories in the (h(1), h(2)) plane for E = −0.1, η(1) = 1, η(2) = 0.5,
ρ(1) = 1, ρ(2) = 1.

of dh(1)/dT only occur along the h(2) axis, whereas zeros of dh(2)/dT are given by the
minima of the trajectories shown in figure 4. Using (4.13) and (4.14) the intersection
of these two curves can be found to determine the fixed point (0, h2eq), where

h2eq = 3

√
−3Eν(2)

2ρ(2)
. (5.2)

The value of h2eq for the conditions shown in figure 4, E = −0.1, ν(2) = 0.5, ρ(2) = 1, is
approximately 0.422. Note that for all the trajectories shown, h(2) reaches a minimum
where condensation balances the drainage of the upper layer. But then the thickness
of the upper layer begins to increase as the drainage in the lower and upper layers
continues to reduce while the films thin further.

Finally, we have performed a linear stability analysis of the uniformly thinning films
and have found no interfacial instabilities. This is consistent with the model studied
that does not include inertia or attractive van der Waals forces that would cause
interface perturbations to grow. Our focus in the next section is on the behaviour of
larger disturbances to the liquid layers that may arise during delivery of liquid to the
substrate or from other external forces.

6. Numerical solutions
The numerical solutions are obtained by discretizing the domain R ∈ [0, 1] into N

equal divisions and approximating the derivatives in R from (4.13) and (4.14) using
second-order accurate finite differences. The resulting system of ordinary differential
equations is integrated using the LSODA integrator from ODEPACK provided by
Jones et al. (2001). In all cases at the outer edge of the computational domain
it is assumed that the evolution equations apply. At the outer boundary, the first
derivatives are evaluated using a second-order accurate, one-sided finite-difference
formula. This is sufficient because of the character of the partial differential equation;
it is a quasi-linear hyperbolic system which has characteristic speeds that are always
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Figure 5. Evolution of initial conditions resembling those of Emslie et al. (1958), for T = 0
and T = 0.3, with E = 0, η(1) = 1, η(2) = 0.5, ρ(1) = 1, ρ(2) = 1.
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Figure 6. Velocity vector field for for E = 0, η(1) = 1, η(2) = 0.5, ρ(1) = 1, ρ(2) = 1, with
Gaussian disturbances in the upper layer at R =0, R = 0.5.

positive. Thus the solution at any point depends only on points to the left at earlier
times. The LSODA integrator is informed of the maximum time step that satisfies
the Courant–Fredrichs–Levy condition, so that the numerical domain of dependence
contains the analytical domain of dependence.

Figure 5 shows the evolution of a ripple on the free surface with a flat internal
interface: h(1) = 1, h(2) = 1+0.2 cos(8πR). The free surface at T = 0.3 exhibits the same
characteristics as a similar initial profile given in figure 5 in the work of Emslie et al.
(1958). Note that the disturbances induced along the internal interface travel outward
more slowly than those along the free surface. Figure 6 is simply an illustration of
the flow at a given time during the evolution of two profiles having disturbances
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Figure 7. Basic set of initial conditions.

of opposite signs: h(1) = 1, h(2) = 1 ± 0.5
[
exp(−100R2)+ exp(−100(R − 0.5)2)

]
. Our

general observation is that behaviour of the interface disturbances is the same as
observed by Emslie et al. (1958); they propagate outward at a speed that generally
increases with R and decrease in magnitude with time.

7. Layer interactions
In this section we examine the differences in the evolution of the free surface and

the internal interface when subject to the initial conditions enumerated in figure 7.
The calculations will shed light on the influence that disturbances in one layer have
on the other layer. The initial interface shapes considered include disturbances having
Gaussian form (centred at R =0) for one or both layers, with the sign for the lower
(upper) layer indicated by the first (second) symbol in the shape description. So,
for example, the shape (0+) is defined by h(1) = 1, h(2) = 1 + Ae−αR2

. Note that the
classification scheme for the initial disturbances denotes changes to the ‘thickness’
of the given layer, not simply to the interface shape. Therefore, if the thickness of
the lower layer alone is increased, the upper layer will exhibit an increase in height
as well but not in thickness, as illustrated in figure 7. The plots in this section
were produced with A= 0.25, α = 275, η(1) = 1.0, ρ(1) = 1.0, η(2) = 0.5 and ρ(2) = 1.0. As
discussed previously, the outer boundary conditions are that the differential equations
themselves are applied at R = 1. As long as the initial disturbances shown in figure 7
have not yet propagated to the outer boundary, the behaviour of the disturbed films
at the boundary of the domain using this edge condition is exactly the same as in the
case of thinning flat films having the same initial thickness at R =1 as the disturbed
ones. Thus, in this section, calculations are continued for times over which the initial
disturbances shown in figure 7 have not yet propagated to the outer boundary. An
example of the difference between numerically calculated values of the thinning rate
at the edge of the computational domain using this code for a non-uniform, disturbed
film with the solutions for the appropriate thinning flat films is given in figure 8. In
figure 8, the calculation is shown for the case in which the non-uniform film has the
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Figure 8. Deviation from flat state at right boundary. The initial conditions used in this
calculation are given by to the condition (0+) shown in figure 7.

initial condition (0+). The Gaussian disturbance does not propagate to the right edge
of the domain until T ≈ 1.1 at which point the end conditions begin to deviate.

In order to quantify the deviation of an interface from a flat film on the interval
R ∈ [0, 1] the following measure is defined (using h(1) as an example):

V 1
0

(
h(1)

)
=

∫ 1

0

∣∣∣∣∂h(1)

∂R

∣∣∣∣ dR. (7.1)

With this measure we will compare the behaviour of different initial conditions on
interface evolution.

Disturbances in the lower layer have a different effect on the upper layer than do
upper layer disturbances on the lower layer. For example, as shown in figure 9, a
disturbance in the lower layer (initial condition (+0)) produces a maximum variation
of 0.065 in the upper layer thickness, while a similar disturbance in the upper layer
(0+) induces a variation of only 0.020 in the lower layer. Note that the free-surface
variations for both conditions are shown in the rightmost plot to allow comparison.
The variation in the free surface can be seen to decrease more rapidly for (0+) than
for (+0).

Negative disturbances decay more slowly than do positive ones. As shown in
figure 10, a negative disturbance in the upper layer (0−) decays much more slowly
than a positive one (0+) but induces a slightly larger disturbance in the lower layer.
Similarly, as shown in figure 11, (−0) decays more slowly than (+0) and induces a
larger disturbance in the upper layer. Identical disturbances of opposite sign (+−),
(−+) result in an initially flat free-surface boundary, but the disturbance in this
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Figure 9. Variation of layer thicknesses and free surface for disturbances in different layers
(0+ and +0).
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Figure 10. Variation of layer thicknesses and free surface for disturbances of differing sign
in the upper layer (0+ and 0−).

interface is larger for the (−+) case. This can be seen in figure 12. This appears to be
true for any combination of layer parameters.

In general, the results indicate that disturbances to the lower layer thickness
have a greater effect on the upper layer thickness and the free surface than
disturbances to the upper layer thickness have on the lower layer thickness and internal
interface shape. In addition, negative disturbances tend to dissipate more slowly, and
they produce a greater variation in the liquid–vapour interface than do positive
disturbances.
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Figure 11. Variation of layer thicknesses and free surface for disturbances of differing sign
in the lower layer (+0 and −0).
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Figure 12. Variation of layer thicknesses and free surface for disturbances of different signs
in both layers (+− and −+).

8. Discussion
A model of a two-layer thin liquid film on a rotating horizontal substrate is derived

using lubrication theory. The system of evolution equations for the interface shapes
includes the effects of van der Waals forces, capillary forces, viscous forces and mass
loss or gain because of evaporation or condensation (at constant rate) at the upper
free surface. Results are presented for cases that ignore gravitational, capillary and
intermolecular forces.

Calculations for the evolution of flat interfaces for the three cases of no
mass exchange with the overlying vapour, evaporation from the upper layer and
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condensation of the upper layer show that in general, the planar solutions exhibit
behaviours similar to those of the one-layer planar solutions given in Reisfeld et al.
(1991a). For all cases the lower layer thins monotonically, reaching zero thickness
only in the limit of infinite time. Without evaporation or condensation, the upper
layer also takes an infinite time to thin. If evaporation is present the upper layer thins
to zero thickness in finite time.

If condensation from the vapour into the upper layer is occurring, the upper
layer approaches an equilibrium thickness after passing through a minimum value.
Initially, the drainage rate of the upper layer fluid because of rotation is high and
overwhelms the condensation rate. As the layers thin the horizontal component of the
fluid velocity (and the drainage rate) in the upper layer decreases, so that eventually
condensation balances the drainage, leading to a minimum upper layer thickness. As
the layers thin further, the condensation rate exceeds upper layer drainage, and the
upper layer thickness then increases towards its equilibrium value.

Increasing the viscosity of the upper layer at fixed rotation rate reduces the rate
at which the upper layer thins, since the horizontal component of the fluid velocity
and thus the drainage is decreased. This results in a reduction of the fluid velocity
and thinning rate in the lower layer as well. Thus, the overall drainage rate of the
layers decreases. Increasing the density of the liquids increases the thinning rate of
the layers, since a denser fluid drains more rapidly at fixed rotation rate.

The variation of the interfaces from the flat state was measured. In general,
disturbances to the lower layer thickness have a greater effect on the upper layer
thickness and on the free surface shape than disturbances to the upper layer thickness
have on the lower layer thickness and on the internal interface shape. Disturbances
along the free surface propagate outward more rapidly than those along the internal
interface. In general, since the fluid velocities in the upper layer are larger than those
in the lower layer at a given radial distance, upper layer disturbances are advected
out of the domain more quickly.

In the future additional physical effects will be included in order to examine the
evolution of unstable liquid bilayers during spin-coating. This will allow comparison
of the results of our model with the experimental results on the microstructural
evolution of polymer blends that have been presented in the introduction.

The authors acknowledge support from the Royalty Research Fund of the University
of Washington.

Appendix: Components of the fluid velocities

U (10) = − RZ

2η(1)ν(1)ν(2)

(
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]2

+3((η(1) − 2η(2))ν(1) − η(1)ν(2))
[
h(1)

]2
h(2))Zη(1)ν(1)

]
(A 4)

W (10) = − Z2

6η(1)ν(1)ν(2)

(
3Rη(1)ν(2) ∂h(1)

∂R
+ 3Rη(2)ν(1) ∂h(2)

∂R
− 2Zη(1)ν(2)

+6η(1)ν(2)h(1) + 6η(2)ν(1)h(2)

)
(A 5)

W (20) = − 1

6η(1)ν(1)ν(2)

(
3(η(1) − η(2))Rν(1) ∂h(2)

∂R

[
h(1)

]2
+ 2(ν(1) − ν(2))η(1)

[
h(1)

]3

+ 6(η(1) − η(2))ν(1)
[
h(1)

]2
h(2) + 3

(
R

∂h(1)

∂R
+ R

∂h(2)

∂R
+ 2h(1) + 2h(2)

)
Z2η(1)ν(1)

−2Z3η(1)ν(1) + 3
((

ν(1) − ν(2)
)
η(1)h(1) + 2

(
η(1) − η(2)

)
ν(1)h(2)

)
Rh(1) ∂h(1)

∂R

−6

(
(η(1) − η(2))Rν(1) ∂h(2)

∂R
h(1) + (ν(1) − ν(2))η(1)

[
h(1)

]2
+ 2(η(1) − η(2))ν(1)h(1)h(2)

+((ν(1) − ν(2))η(1)h(1) + (η(1) − η(2))ν(1)h(2))R
∂h(1)

∂R

)
Z

)
(A 6)
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